2024 到 2025,《晚点》与闫俊杰的两次访谈,记录一条纯草根 AI 创业之路(上)

晚点LatePost
01-09

来找找相同和不同吧。
本文首发于 2024 年 04 月 17 日,2025 年 01 月 17 日。

文丨程曼祺

编辑丨宋玮

在今天(1 月 9 日)早上前往港交所敲钟前,MiniMax 创始人闫俊杰对《晚点 LatePost》分享了他此刻的想法:

希望我们后续能有机会对整个行业智能水平的提升做出更大的贡献。我们初步探索了一条纯草根 AI 创业的路径,尽管后面还是非常挑战,如果能对 AI 创新创业生态的发展有启发我们会感到很光荣。

2024 年和 2025 年,《晚点 LatePost》发表了两篇对 MiniMax 创始人兼 CEO 闫俊杰的访谈。第一篇访谈发生在 2023 年年底和 2024 年 3 月,第二次访谈发生在 2025 年 1 月。

两次访谈间隔不到 1 年,行业和 MiniMax 自身都有很大变化。2024 年初,闫俊杰给团队定下的目标是 “技术上如何达到 GPT-4,产品上如何把用户规模翻十倍,单个产品能突破千万 DAU(日活)。”2025 年春节 DeepSeek-R1 震撼全球后, DAU 在 MiniMax 内部被视为 “虚荣指标”。

这在那个春节前的访谈中已有信号。当时闫俊杰告诉我们,做大模型的一大误区是套用移动互联网的逻辑。更多的用户和他们带来的反馈能直接反哺移动互联网推荐算法,让它更懂用户、更精准,但这些数据并不能直接让模型变得更聪明,现阶段提升大模型性能的核心方法是训练和迭代新模型。

不变的是,MiniMax 一直想做服务普通人的 AI,“Intelligence with everyone”。闫俊杰提及的一些计划被陆续执行:比如第一次访谈中他讲的 MoE(混合专家系统)和线性注意力机制——2025 年 1 月发布的 M1 是第一个使用线性注意力的千亿参数大模型。也有一些计划则暂时未有后续,闫俊杰认为 “信息获取” 有做 Agent 的机会,但 MiniMax 目前没有推出公开的产品。

两次访谈的不同和相同,记录了这家公司和行业议题的变化。

2024 年的访谈:AGI 不是大杀器,是普通人每天用的产品

“每件事都是做到极致才会好”

晚点:一位 OpenAI 的工程师告诉我们,他判断一位人工智能创业者到底有没有真正的 AGI 信仰,就看这个人是在 ChatGPT 发布之前创业还是在这之后。

闫俊杰:MiniMax 是 2021 底创立的,我们刚创业的那个时间点,AGI 在中国还是一个巨大的非共识。

我们当时计算过,把 GPT-3 扩大 100 倍需要非常多一笔钱,可能是几十亿美元。但在那个时间点,我们显然不认为中国会有那么多钱愿意支持一家创业公司。

晚点:有人认为你们最开始是做元宇宙的,大模型火了后才说做 AGI。你们在出发时到底有多相信 AGI?

闫俊杰:我们是在 ChatGPT 出来之前成立的,大部分公司是在那之后,这是核心的区别。

ChatGPT 之前,很多事情没有参考,你不得不做更多尝试,但最内核的还是技术进步,不确定的是产品方向。

我们最开始对 AI 产品的想象是一个同时有声音、形象、文字能力的智能体,我们做过一版有 3D 形象的东西,有点像元宇宙里的数字人,但它的语言、语音等能力还是用大模型驱动的。

晚点:你认为 AGI 到底是什么,假设有一天 AGI 真的实现,我们如何知道它已经到来?

闫俊杰:那时候我们有个模糊的定义,现在也几乎没变,就是什么时候大家认为 AI 不是 AI,那一天大概就到来了。

就像我们今天谈到抖音,你不会觉得它是一个基于推荐系统的内容分发软件,你只会觉得抖音就是抖音。

晚点:MiniMax 是国内第一个说 AI 2C 的公司,为什么?

闫俊杰:决定创业前,我一直在思考什么样的技术进步可以给社会带来足够高的反馈,想到的有电动车、移动互联网。这些行业的最大特点都是服务普通人,而服务普通人的前提是它能商品化,它是一个产品,不是一个项目。

当时整个人工智能行业遇到困境,而取得真正成功的行业又是另一种做法,结论几乎只有一个——要做出足够产品化、能服务大众的人工智能技术和产品,而不是服务少数大客户的项目。

所以我一直不认为 AGI 会像一个原子弹、一个大杀器,它就是普通人每天会用的一个产品、一个服务——这也是我们最坚持的。

而且 AGI 也不应该是一家公司自己做出来,它要靠这家公司和它的用户一起做出来。

晚点:今年 1 月你们是国内第一个推出 MoE 大模型的,其它公司去年主要在迭代 dense(稠密)模型,因为进展更快、更确定。做 MoE 是一场豪赌吗?

闫俊杰:一开始我也认为我们在赌,那几个月别人都在快速进步,走在更稳的路上,而我们在赌一个更难的东西。

我们当时放了 80 % 以上的算力和研发资源做 MoE,而且没有 Plan B。

晚点:MoE 是 2023 年夏天开始研发的,为什么当时一定要做这个?

闫俊杰:第一,我们知道自己有多少基本资源和数据,基于这些计算资源和数据,当时只有 MoE 能训完,相当于从你能训练的上限来说,必须得是 MoE。

第二,我们当时已经有很多用户,有 2B、2C 的产品,很多模型每天在处理大量 token,我们发现如果继续做 dense 模型,生成 token 的成本和延时是接受不了的,很快会崩溃,所以只能做 MoE。

当然现在这可能是行业共识了,就是如果要做万亿模型,你不可能做一个 dense。

晚点:最后是怎么搞定的?

闫俊杰:过程很痛苦,失败了两次。因为我们本来就有很多不确定性,做新东西又增加了不确定性,它就应该遇到挑战。

比如模型训了半个月,发现一些指标离前期估测的越来越远。就像你发了一个火箭,本来以为它可以到三万米,但它偏航了。你就开始想哪个地方错了,把问题解完之后,发现还没有回到一个好的状态,又失败了。但你得到了很多经验,把经验汇聚起来,再来一次。

每一次都是很多钱,更重要的是时间。

我后来发现其实这也不是赌,因为很多挑战不是 MoE 本身带来的,而是更多底层的东西:比如对实验方法、网络和数据结构的探索等等。

后面解决问题也不是因为解决了 MoE,而是找到了过去的不足,让整个研发团队变得效率更高、更科学了。

晚点:一个接触过你的人评价你很有工程化思维,你追求在一个约束条件下达到最好的目标。

闫俊杰:其实都是算出来的,我们公司大部分决策都是基于要优化某些东西计算的,我们就是在解方程。

晚点:现在各公司的资源也就是约束条件都变得很快,你计算时会倾向保守还是冒险?

闫俊杰:我们基本上都选最冒险的那种,因为做每件事都是做到极致才会好。

我选的技术路线也是上限最高的,几乎没有退路,选的算力方式也比较激进。

晚点:我听说你们不买 GPU,只租卡。

闫俊杰:我们没有一块 GPU ,虽然我们应该是中国公司里实际用 GPU 数量最多的创业公司。

因为持有资产会使动作变形。如果我有很多 GPU,在商业上变得更好的方式就是对外租 GPU。我还是想让公司更简单。

晚点:去年 10 月你们遇到过算力紧缺,怎么避免类似的风险?

闫俊杰:成为市场上最大的客户。

对中国创业公司来说,更好的方式是同时思考技术和产品

晚点:李彦宏说创业公司做 “双轮驱动” 不是好模式,但你们第一天就要做产品,是怎么决策的?

闫俊杰:一开始创业其实没资格想这些事,因为你既没有技术又没有产品也没有用户。前六七个月只是把最原始的模型做出来,才有了后面的产品。

假设你所有东西都是 free 的,假设你有一个无限强的组织,那对你来说,技术好是最重要的,因为你的用户、流量、商业化能力都具备了,可以很快试很多产品。

但对创业公司不是这样,如果没有足够好的产品能力来承接,即使你有了一些技术进展,这些东西最终也不是你的。一个独立发展的创业公司一定要考虑产品。

晚点:OpenAI 也是在做出 GPT-3.5 后才开始做 ChatGPT 这个杀手级应用 。之前 OpenAI 没那么重视产品。

闫俊杰:那是因为 OpenAI 的技术、人才、数据积累都有数量级的领先,导致它有一个长达一年的创业窗口期。我不认为世界上还有什么公司,能再有一个这么独特的的窗口期。

没有谁会是 10 倍的 OpenAI,没人能短时间里拿出一个好于全世界十倍的东西。

这就推出来,对创业公司,至少对中国的创业公司来说,更好的方式是同时思考技术和产品。

晚点:有投资人认为你们现在做产品有些太早,“在黑莓手机上做不出抖音”。

闫俊杰:按照这个观点,现在也不需要做技术,现在的技术也不是五年后的技术。

但显然大家都认为现在需要做技术:只有通过做出现在的技术,才能更深刻理解它,才可能做出未来三年、五年的技术。

晚点:技术发展是渐进式的,产品也是吗?这个时代的产品跟上个时代的产品完全不同。

闫俊杰:产品也是。中国成功的很多公司,比如米哈游、美团、字节、理想,都有一个共同特点——它们都不是靠第一个产品成功的,都是靠第二个或者更往后的产品才成功的。

这不是我说的,是我的一个朋友总结的。

晚点:那你们为什么不干脆只专注做产品?现在有很多开源大模型。

闫俊杰:核心原因在于,对模型的理解基本上等同于对产品的理解。产品越往下做,对模型理解肯定要越深。

另一个客观原因是成本和响应时间,如果没有对模型的强掌控力,就很难掌握产品成本的变化,也无法调教对用户的响应时间。而且做产品你会遇到很多问题,什么问题可以解决?什么不能解决?怎么迭代?这些都需要你对技术的掌握。

一个现实是,去年很多产品是用 GPT-4 做的,为什么没人做出一个媲美 ChatGPT 的体验?

晚点:同样做产品,有人是主做一个,你们却同时做很多,包括 Glow、星野、海螺 AI 等。为什么要做产品组,而不是专注做一两款产品?

闫俊杰:OpenAI 在 ChatGPT 之后的产品也没那么成功, OpenAI 做产品都会失败,说明现在产品对技术的理解,和技术本身能实现的东西之间有 gap。

核心就是,即使用最好的技术,最好的产品,都会不匹配。

如果你承认这个 gap,客观规律就是:你该多尝试、多失败,找到真正能成功的东西。

晚点:感觉有点像字节跳动做产品的方式。

闫俊杰:我们还没有资格按照字节跳动的方法做事。

每个公司都会选择最合适自己的形态。比如对字节来说,最重要的是技术资源,因为它所有产品都是 ready 的,且产品资源无限多,所以尝试越多对它越有利。而且每次投入,即使产品失败,也会带来更多经验和认知,这对他们的提升是巨大的。

我们也一样。而且相比模型研发的投入,产品投入的资源占比没那么大。基于我们公司目前的现状,可以算出来这样成功率最高。

晚点:技术重要,产品也重要,你们纠结过到底哪个更重要吗?

闫俊杰:之前纠结过,但现在不纠结了。

2022 年下半年我们做 Glow ,有一个经历非常惨痛。当时团队都感染了新冠,导致 2022 年底最后一次发版里出现了一个 bug,它把用户的对话体验拉低了 15% 左右,我们元旦三天 DAU 直接掉了 40%。后来实在受不了,终于在放假最后一天找到了这个 bug,其实就是非常小的一行算法,把它改了,用户量很快就回来了。

这个事给我们的教训就是,现阶段产品价值的来源,核心还是你的模型性能和算法能力。

这样的事我们经历了好几次,你可以做很多产品 feature,但你会发现,几乎所有大的提升都来自模型本身的进步。

晚点:同时做大模型和这么多产品,最大的挑战是什么?

闫俊杰:技术不够好,这是最本质的。我们的技术迭代速度已经很快了,但离全球顶尖的模型仍有差距。

十倍的 Scaling Laws

晚点:欧洲头部人工智能公司 Mistral 已经开源了 MoE 模型,行业普遍认为 OpenAI 的 GPT-4 也是 MoE,MoE 会是今年大模型领域的一个赛点吗?

闫俊杰:MoE 只是其中一个环节,还有很多其他环节。如果一个东西能写在一篇论文里,你基本可以认为它不是个绝对壁垒。

晚点:在这场技术竞赛中,MiniMax 有什么非共识的判断吗?

闫俊杰:这个行业如果有什么非共识,6-9 个月内,很快也会变成共识。

现在有三个大家都能看到的东西:一是 Scaling Laws;二是实现同样精度的模型,需要的算力和资金投入可能每年降几倍,因为算法和学术界公开的东西越来越多,很多人会做自由探索;三是把精力放在提高数据质量上,现阶段收益更大。

所以从这三点来看——Scaling Laws、同样精度模型的成本下降、数据质量提升的重要性——基本可以推出来我们和其他公司的一些决策,我觉得是比较简单的。

晚点:你怎么理解 Scaling Laws(规模定律)?它让你看到了什么可能性?

闫俊杰:Scaling Laws 就是一条曲线,你可以信仰原始的 Scaling Laws,也可以信仰十倍快,甚至百倍快的 Scaling Laws。

2020 年最初提出大模型 Scaling Laws 的论文 “ Scaling Laws for Neural Language Models ” 认为影响模型性能的最重要变量是算力、数据量和参数,并给出了这些变量间的数字关系:C≈6ND,C 是计算量(Compute)、D 是数据量(Dataset)、N 是模型参数量(Parameters);而模型结构和层数等因素对性能影响没那么大。

它更多是提供一个方法论:即你可以通过更小规模的实验来预测更大实验的结果。第二是它能让行业对齐目标,因为这件事需要数据、算力、芯片、算法和产品等多个环节的分工协作,Scaling Laws 可以让大家有相对一致的预期。

至于那篇论文里的那个公式和一些结论,现在看也不一定对,比如它认为层数、结构等没那么重要,至少有几个变量现在看是重要的。

晚点:比如呢?什么变量让你有可能实现十倍、百倍的 Scaling Laws?

闫俊杰:比如网络结构本身也重要。我们做 MoE ,最开始认为好的 MoE 结构和好的 dense 结构类似,后面发现不是,MoE 本身也能加速 Scaling Laws。

还有提升数据质量;还有算力的分配,你可以把算力分配到训练上,也可以分配到数据处理上。不同选择都可能加速 Scaling Laws。

晚点:Scaling Laws 的力量来自它够简洁,当你引入更多变量,就破坏了它。

闫俊杰:提升数据质量、优化算法和优化训练方法都没有尽头,持续做就会持续好。

真正的取舍是,它们对 Scaling Laws 的效率提升在不同周期不一样快。但你可以通过小规模实验来预测哪些变量在什么阶段更重要,这其实还是 Scaling Laws 的方法论。

为什么在中国一定要做几倍的 Scaling Laws?当算力充足,你可以优化原始的 Scaling Laws;算力不充足时,你必须优化一个几倍的 Scaling Laws,去达到相似效果。

这不是不可能的。另一家硅谷 AI 公司 Anthropic 已经用更短的时间做出了类似 GPT-4 的 Claude-3,这其实就是放大了原始的 Scaling Laws,有一个就会有第二个、第三个。

晚点:现在被讨论很多的长文本(Long Context)会成为大模型竞赛中的一个差异化路线吗?

闫俊杰:好的大模型默认就应该支持长文本。我们一直都有长文本,我们没在产品里强调这个功能,主要还是因为计算成本。

晚点:实现更长文本处理能力的技术方法是什么?

闫俊杰:标准 Transformer 里之前用的是非线性 attention;而过去一年多,很多人在研究线性的 attention,这就能帮助长文本。

线性 attention 的好处是,当文本非常长时,它的计算复杂度会是线性增长,而不是平方增长。但实际上 token 在 20 万、30 万量级时,线性和非线性效果差不多,因为二次函数在前期时近似线性函数。差别在 80 万到 100 万 token 时才特别明显。

据我所知,Google 的 Gemini 1.5 是第一个接近线性 attention 的模型。你现在调其它 API,当文本非常长时,响应会很慢。但 Gemini 1.5 真正实现了一个 100 万 token 量的文本,和 50 万比,响应只长 1 倍,而不是长 4 倍。

所以长文本解决的不是 20 万或 30 万量级的问题,而是 100 万再往上的量级。

晚点:100 万 token 近似于能处理 100 万字,你觉得多少人有这个需求?

闫俊杰:用户需求和你提供的能力是相互发生的,一个远超大家预期的模型放在这,慢慢会引起很多人的需求。

比如 ChatGPT 没有语音通话前,没人会说自己的需求是语音通话,但放上去之后,很多人会用语音通话。

我们做的语音对话产品——海螺 AI 的通话功能也很受欢迎。我阿公 80 岁,第一次用这个产品就和它讨论了四五十分钟的历史人物,我之前想不到有人会这么来用它。

晚点:看起来你们是在产品里先强调了语音等多模态能力,而不是长文本。怎么判断先优化什么技术能力?

闫俊杰:我们有一句话,Intelligence with everyone,我们并不是这个技术的 owner,这是我们最核心的信仰。

去年人工智能非常火,但全世界用过 AI 产品的人可能只有 1 到 2 亿,重度用户只有几千万。因为提出一个好的问题以及连续追问,门槛非常高,真正愿意打字的可能就是在座的这些人。更多人还是习惯用语音。

我们看重多模态,也是因为它可以让更多人来使用 AI,包括老人和小孩。当我们在产品里加入图片和语音时,可以明显观察到用户的上手门槛,甚至渗透率的变化。从今日头条到抖音,一模一样的事在移动互联网领域已经发生过一次了。

越到后期,用户的价值越高

晚点:你们推出的第一个产品 Glow,让用户和自己定制的 AI 角色交流,类似乙女游戏(恋爱角色扮演),在二次元圈子很流行,当时怎么想到做这个方向的?

闫俊杰:我们早期做产品冷启动时,针对性地找了不少年轻群体,比如 AI 爱好者、二次元人群,根据他们的体验和反馈做了前几版的迭代。

起量后,我们每天都盯着社媒用户咋用的。我们做产品早期没做过 AB testing,都是观察用户看用户反馈,再看数据验证和迭代。

晚点:做产品踩过什么坑?

闫俊杰:最早我们做智能体,当时对它的想象是同时具有声音、形象和文字的能力,这也是为什么公司刚成立就做了三个模型——语言、语音、视觉。

很快我们放弃了 3D 形象,因为它不能规模化,之前用 3D 的大行业只有游戏和电影,研发周期都是几年;同时,我意识到用深度学习来做 3D 这件事不对。

在目前的载体——手机上,如果一个 3D 人一直看着你,这本身就很奇怪。大部分情况下,交互其实不需要有一个真的形象。

晚点:是上线后通过某些数据看出来的?

闫俊杰:不是数据。当时做第一版形象,找了两个模特去拍。当把 3D 放进手机的那个瞬间,我们就知道这件事是不对的。

晚点:你们第一个模型还没做出来,就招了产品经理,当时你如何向他描述你想要一个怎样的产品?

闫俊杰:不知道。

晚点:你说不知道?

闫俊杰:那个时候是不清晰的,因为没有任何参考。我们只是想象有一个智能体可以和你自由、长时间的对话,它的本质是信息的交换和处理。

我们能确定的是,模型最重要是服务大众,那它一定会是一个产品。所以我们最早就找了产品经理。

晚点:用户有很多需求,满足什么不满足什么?

闫俊杰:我们的取舍到后面变得简单,看这个需求是否符合技术发展的趋势,是否能对这类用户的体验带来 10 倍以上的变化。

晚点:产品审美上,你认为怎样的产品是好产品?你们现在的产品玩法很多,有点复杂。

闫俊杰:坦白说,我们现在还没有做出来,所以没有答案。

当你问产品是复杂好还是简单好,大部分人一定会说简单好。但我自己比较怀疑这件事,尤其在一个行业发展前期。你想腾讯在做出微信之前,也是因为先做出了 QQ,而 QQ 是一个非常复杂的产品。

ChatGPT 大概 3000 万 DAU ,似乎很难再增加。我的结论是,一个偏简单的 AGI 产品,在目前的技术阶段,上限可能也就是这样,但最终我相信会有很简单的交互形态满足更广泛的需求。

晚点:Sora (OpenAI 发布的文生视频大模型)的出现对你有什么启发?

闫俊杰:如果 Sora 的响应速度未来能变得非常快,生成一个 1 分钟的视频不是像现在这样要花 20 分钟,而是可以实时生成,这会是很大的变化。

那它到底会是一个更好的生成视频工具,还是一个更好的生成视频的社区呢?

晚点:生成视频的社区,再往下一步不就是超级内容平台?

闫俊杰:都可以想,取决于你是不是相信这个东西空间足够大,以及你是不是相信响应时间能变得足够低。

晚点:你认为未来用户量最大的 AI 产品可能会是什么?

闫俊杰:我们只做出了日活百万的产品,还没有做出千万级或者十亿级的产品,坦白说不知道。我觉得可能还是信息的交换和处理,它的价值是巨大的。

晚点:MiniMax 产品的日活已接近 Character.AI(美国 AI 独角兽开发的一个可以和各种 AI 角色聊天、互动的应用),使用时长甚至更长。但有人质疑你们数据好不是因为技术好,而是因为软色情。

闫俊杰:我们做过分析,真正让用户留下来的东西绝不是所谓软色情。比如我们的产品星野,它的核心是给用户提供一个能够发挥创造力和想象力的平台。

我们花了很多时间和精力来确保内容是更加正向的,持续提升平台的安全能力。

晚点:技术提升能对产品带来多大提升?你们在星野上用了 MiniMax 自研的 MoE 模型,效果怎样?

闫俊杰:上线当天的消息量涨了 40%。响应更快了,之前响应要 4 秒,现在是 1 秒,这不光是因为 MoE,还有一些其它推理优化。

晚点:技术提升速度越快,和用户量越大,是因果关系吗?

闫俊杰:这非常 tricky。如果你是行业第一名,是 OpenAI,那它大概率是因果关系;如果你不是第一名,那就不是因果关系。

过去一年中国很多大模型公司没有很多用户,技术也会提升,因为你只要学第一名就可以进步。但长期看,如果你认为自己的模型可以接近最好的模型,那用户的权重和价值会越来越高。

这个就像算力,拥有更多的算力就能做出更好的模型吗?不一定,提升数据质量可能是 ROI 更高的事。但长期看,你有更多的算力,一定可以做出更好的模型。所以要看周期。

晚点:AI 原生的超级产品和移动互联网时代的超级产品,你认为会有什么不同?

闫俊杰:做移动互联网产品,大家特别在意有没有挖到一个用户痛点。但去年 DAU 超百万的六七个 AI 原生产品都不是针对痛点设计的,是把一个突破性技术释放,慢慢变成了产品。反而是后面针对性设计功能时都不太成功,比如 ChatGPT Plugins 和 GPT-S。如果技术进步速度慢下来,又会变成产品推动的方式。

目前的产品方法还是技术 driven,而非产品 driven。

晚点:你们的产品功能现在已经比较细,比如海螺 AI 经常有消息推送,吸引用户点开,你们实际上做了比较多产品优化?

闫俊杰:最近我们也在在反思,产品功能点太全面,也许是一个偏负向的事,说明你在最核心的功能上没有花最多的精力。

晚点:今年给团队什么目标?

闫俊杰:技术上如何达到 GPT-4,产品上如何把用户规模翻十倍,单个产品能突破千万 DAU。

晚点:10 倍增长,这么大。

闫俊杰:其实不大,移动互联网产品都是亿级 DAU。

靠融资打不死别人

晚点:你觉得以中国目前整个市场的钱和资源,能够支撑几家做 AGI 的创业公司?

闫俊杰:不会只有一家,总资源量是够的。

晚点:今天很多投资人已经不看大模型了,他们认为做大模型,创业公司没机会。

闫俊杰:我经历过靠融资堆起来的上一个 AI 的发展阶段。假设一家公司需要靠不停融资来发展,那这个公司真正的优化,可能会变成怎样说服投资人给它更多的钱。

我自己内心的路径是,通过慢慢服务用户,产生一些合理的商业化。当然因为有巨大的研发投入,这件事短期很难实现,但我认为应该探索这条路。

晚点:整个市场资源有限时,第一名难道不应该努力融到市场上最多的钱,让其他人拿不到钱?上一波移动互联网的竞争很多是这样。

闫俊杰:你疯狂的融钱,别人都会融不到钱——我认为这是不对的,靠融资是打不死其他人的。

因为排在前面的中国创业公司,没有谁的资源能比别人多一个量级。拐点只可能来自于技术、产品或者是商业化效率的领先。

贺乾明对此文亦有贡献。

题图来源:《平凡之路》MV

免责声明:上述内容仅代表发帖人个人观点,不构成本平台的任何投资建议。

精彩评论

我们需要你的真知灼见来填补这片空白
发表看法